翻訳と辞書 |
Classical electromagnetism and special relativity : ウィキペディア英語版 | Classical electromagnetism and special relativity
The theory of special relativity plays an important role in the modern theory of classical electromagnetism. First of all, it gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. Secondly, it sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electrostatic or magnetic laws. Third, it motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form. Maxwell's equations, when they were first stated in their complete form in 1865, would turn out to be compatible with special relativity.〔Questions remain about the treatment of accelerating charges: Haskell, "(Special relativity and Maxwell's equations. )"〕 Moreover, the apparent coincidences in which the same effect was observed due to different physical phenomena by two different observers would be shown to be not coincidental in the least by special relativity. In fact, half of Einstein's 1905 first paper on special relativity, "On the Electrodynamics of Moving Bodies," explains how to transform Maxwell's equations. ==Transformation of the fields between inertial frames==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Classical electromagnetism and special relativity」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|